2012
Pung, Aaron J; Poutous, Menelaos K; Rumpf, Raymond C; Roth, Zachary A; Johnson, Eric G
Fabrication of optically monolithic, low-index guided mode resonance filters Proceedings
International Society for Optics and Photonics, vol. 8249, 2012.
Abstract | Links | BibTeX | Tags: etching, guided mode resonance (GMR), spectral based filter, waveguide
@proceedings{RN61,
title = {Fabrication of optically monolithic, low-index guided mode resonance filters},
author = {Aaron J Pung and Menelaos K Poutous and Raymond C Rumpf and Zachary A Roth and Eric G Johnson},
url = {https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8249/1/Fabrication-of-optically-monolithic-low-index-guided-mode-resonance-filters/10.1117/12.908582.short},
doi = {https://doi.org/10.1117/12.908582},
year = {2012},
date = {2012-02-08},
booktitle = {Advanced Fabrication Technologies for Micro/Nano Optics and Photonics V},
volume = {8249},
pages = {82490F},
publisher = {International Society for Optics and Photonics},
abstract = {This paper presents a narrow spectral filter based on a monolithic material system. Guided-mode resonance is achieved by embedding a periodic array of air holes within a similar-index material. Microvoids created in the lowindex substrate during deposition of the waveguide give a relatively high index contrast for guided-mode resonance. One and two-dimensional gratings are used to examine polarization dependence of the device. Theoretical and experimental results are provided, demonstrating a roughly six nanometer resonance at the full width half-maximum for both geometries.},
keywords = {etching, guided mode resonance (GMR), spectral based filter, waveguide},
pubstate = {published},
tppubtype = {proceedings}
}
This paper presents a narrow spectral filter based on a monolithic material system. Guided-mode resonance is achieved by embedding a periodic array of air holes within a similar-index material. Microvoids created in the lowindex substrate during deposition of the waveguide give a relatively high index contrast for guided-mode resonance. One and two-dimensional gratings are used to examine polarization dependence of the device. Theoretical and experimental results are provided, demonstrating a roughly six nanometer resonance at the full width half-maximum for both geometries.
