• Skip to primary navigation
  • Skip to main content
  • Skip to footer

info@raymond.rumpf.com

  • Email
  • Facebook
  • LinkedIn
  • YouTube
Raymond Rumpf logo

Raymond Rumpf

Professor, Innovator, Author, Researcher

  • Course Offerings
    • Academic Materials
    • EMPossible Courses
  • Research
    • EMLab
    • Hybrid 3D Printing
    • 3D Printed Electronics
    • Spatially Variant Lattices
    • Photonics
    • Electromagnetics
    • Computational Electromagnetics
    • EMLab Capabilities
  • Publications
  • News
  • About Dr. Rumpf
Contact Us

Publications

ResearchGate Profile
Google Scholar Profile

Show all

2012

Barton, Jay H; Rumpf, Raymond C; Smith, Randall W; Kozikowski, Carrie L; Zellner, Phillip A

All-dielectric frequency selective surfaces with few number of periods Journal Article

In: Progress In Electromagnetics Research B, vol. 41, pp. 269-283, 2012, ISSN: 1937-6472.

Abstract | Links | BibTeX | Tags: frequency selective surface (FSS), frequency selective surface (FSS), GMR, guided mode resonance (GMR)

@article{RN71,
title = {All-dielectric frequency selective surfaces with few number of periods},
author = {Jay H Barton and Raymond C Rumpf and Randall W Smith and Carrie L Kozikowski and Phillip A Zellner},
url = {https://www.jpier.org/pierb/pier.php?paper=12042404},
doi = {10.2528/PIERB12042404},
issn = {1937-6472},
year = {2012},
date = {2012-06-11},
urldate = {2012-06-11},
journal = {Progress In Electromagnetics Research B},
volume = {41},
pages = {269-283},
abstract = {All-dielectric frequency selective surfaces (FSSs) can serve as an alternative to their metallic counterparts when they must operate at very high power, loss must be minimized, or when the surface itself must be low observable. When metals are avoided, there is a weaker interaction with electromagnetic waves and it becomes more difficult to achieve strong suppression in the stop band while also realizing compact size, wide field-of-view or broadband operation. One attractive approach utilizes guided-mode resonance (GMR) as the filtering mechanism, but this phenomenon exhibits several drawbacks that must be overcome for practical application at radio frequencies. This paper introduces the concept of guide-mode resonance for FSSs and describes how they can be made to operate with a dramatically fewer number of periods than conventional GMR devices.},
keywords = {frequency selective surface (FSS), frequency selective surface (FSS), GMR, guided mode resonance (GMR)},
pubstate = {published},
tppubtype = {article}
}

Close

All-dielectric frequency selective surfaces (FSSs) can serve as an alternative to their metallic counterparts when they must operate at very high power, loss must be minimized, or when the surface itself must be low observable. When metals are avoided, there is a weaker interaction with electromagnetic waves and it becomes more difficult to achieve strong suppression in the stop band while also realizing compact size, wide field-of-view or broadband operation. One attractive approach utilizes guided-mode resonance (GMR) as the filtering mechanism, but this phenomenon exhibits several drawbacks that must be overcome for practical application at radio frequencies. This paper introduces the concept of guide-mode resonance for FSSs and describes how they can be made to operate with a dramatically fewer number of periods than conventional GMR devices.

Close

  • https://www.jpier.org/pierb/pier.php?paper=12042404
  • doi:10.2528/PIERB12042404

Close

2009

Srinivasan, Pradeep; Poutous, Menelaos K; Roth, Zachary A; Yilmaz, Yigit O; Rumpf, Raymond C; Johnson, Eric G

Spatial and spectral beam shaping with space-variant guided mode resonance filters Journal Article

In: Optics express, vol. 17, no. 22, pp. 20365-20375, 2009, ISSN: 1094-4087.

Abstract | Links | BibTeX | Tags: beam shaping, GMR, guided mode resonance (GMR), narrow band filters

@article{RN32,
title = {Spatial and spectral beam shaping with space-variant guided mode resonance filters},
author = {Pradeep Srinivasan and Menelaos K Poutous and Zachary A Roth and Yigit O Yilmaz and Raymond C Rumpf and Eric G Johnson},
url = {https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-17-22-20365&id=188249},
doi = {https://doi.org/10.1364/OE.17.020365},
issn = {1094-4087},
year = {2009},
date = {2009-05-01},
journal = {Optics express},
volume = {17},
number = {22},
pages = {20365-20375},
abstract = {Novel all-dielectric beam shaping elements were developed based on guided mode resonance (GMR) filters. This was achieved by spatially varying the duty cycle of a hexagonal-cell GMR filter, to locally detune from the resonant condition, which resulted in modified wavelength dependent reflection and transmission profiles, across the device aperture. This paper presents the design, fabrication, and characterization of the device and compares simulations to experimental results.},
keywords = {beam shaping, GMR, guided mode resonance (GMR), narrow band filters},
pubstate = {published},
tppubtype = {article}
}

Close

Novel all-dielectric beam shaping elements were developed based on guided mode resonance (GMR) filters. This was achieved by spatially varying the duty cycle of a hexagonal-cell GMR filter, to locally detune from the resonant condition, which resulted in modified wavelength dependent reflection and transmission profiles, across the device aperture. This paper presents the design, fabrication, and characterization of the device and compares simulations to experimental results.

Close

  • https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-17-22-20365&id=188249
  • doi:https://doi.org/10.1364/OE.17.020365

Close

Poutous, Menelaos K; Roth, Zach; Buhl, Kaia; Pung, Aaron; Rumpf, Raymond C; Johnson, Eric G

Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components Presentation

24.02.2009.

Abstract | Links | BibTeX | Tags: GMR, guided mode resonance (GMR), lithography, numerical simulation, reflectivity

@misc{RN34,
title = {Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components},
author = {Menelaos K Poutous and Zach Roth and Kaia Buhl and Aaron Pung and Raymond C Rumpf and Eric G Johnson},
url = {https://www.spiedigitallibrary.org/conference-proceedings-of-spie/7205/1/Correlation-of-fabrication-tolerances-with-the-performance-of-guided-mode/10.1117/12.814514.short},
doi = {https://doi.org/10.1117/12.814514},
year = {2009},
date = {2009-02-24},
booktitle = {Advanced Fabrication Technologies for Micro/Nano Optics and Photonics II},
volume = {7205},
pages = {72050Y},
publisher = {International Society for Optics and Photonics},
abstract = {Large-scale fabrication of micro-optical Guided-Mode-Resonance (GMR) components using VLSI techniques is desirable, due to the planar system integration capabilities it enables, especially with laser resonator technology. However, GMR performance is dependent on within-wafer as well as wafer-to-wafer lithographic process variability, and pattern transfer fidelity of the final component in the substrate. The fabrication of lithographs below the g-line stepper resolution limit is addressed using multiple patterning. We report results from computational simulations, fabrication and optical reflectance measurements of GMR mirrors and filters (designed to perform around the wavelength of 1550nm), with correlations to lithographic parameter variability, such as photoresist exposure range and etch depth. The dependence of the GMR resonance peak wavelength, peak bandwidth are analyzed as a function of photolithographic fabrication tolerances and process window.},
keywords = {GMR, guided mode resonance (GMR), lithography, numerical simulation, reflectivity},
pubstate = {published},
tppubtype = {presentation}
}

Close

Large-scale fabrication of micro-optical Guided-Mode-Resonance (GMR) components using VLSI techniques is desirable, due to the planar system integration capabilities it enables, especially with laser resonator technology. However, GMR performance is dependent on within-wafer as well as wafer-to-wafer lithographic process variability, and pattern transfer fidelity of the final component in the substrate. The fabrication of lithographs below the g-line stepper resolution limit is addressed using multiple patterning. We report results from computational simulations, fabrication and optical reflectance measurements of GMR mirrors and filters (designed to perform around the wavelength of 1550nm), with correlations to lithographic parameter variability, such as photoresist exposure range and etch depth. The dependence of the GMR resonance peak wavelength, peak bandwidth are analyzed as a function of photolithographic fabrication tolerances and process window.

Close

  • https://www.spiedigitallibrary.org/conference-proceedings-of-spie/7205/1/Correla[...]
  • doi:https://doi.org/10.1117/12.814514

Close

2007

Rumpf, Raymond C; Johnson, Eric G

Modeling fabrication to accurately place GMR resonances Journal Article

In: Optics Express, vol. 15, no. 6, pp. 3452-3464, 2007, ISSN: 1094-4087.

Abstract | Links | BibTeX | Tags: depostion processes, electromagnetic modeling, etching, GMR, guided mode resonance (GMR), numerical simulation, thin film resistors

@article{RN29,
title = {Modeling fabrication to accurately place GMR resonances},
author = {Raymond C Rumpf and Eric G Johnson},
url = {https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-15-6-3452&id=131206},
doi = {https://doi.org/10.1364/OE.15.003452},
issn = {1094-4087},
year = {2007},
date = {2007-04-01},
journal = {Optics Express},
volume = {15},
number = {6},
pages = {3452-3464},
abstract = {Numerical methods for simulating etching and deposition processes were combined with electromagnetic modeling to design guided-mode resonance (GMR) filters with accurately positioned resonances and study how fabrication affects their optical behavior. GMR filters are highly sensitive to structural deformations that arise during fabrication, making accurate placement of their resonances very difficult without active tuning while in operation. Inspired by how thin film resistors are trimmed during fabrication, the numerical tools were used to design a method for adjusting position of GMR resonances at the time of fabrication.},
keywords = {depostion processes, electromagnetic modeling, etching, GMR, guided mode resonance (GMR), numerical simulation, thin film resistors},
pubstate = {published},
tppubtype = {article}
}

Close

Numerical methods for simulating etching and deposition processes were combined with electromagnetic modeling to design guided-mode resonance (GMR) filters with accurately positioned resonances and study how fabrication affects their optical behavior. GMR filters are highly sensitive to structural deformations that arise during fabrication, making accurate placement of their resonances very difficult without active tuning while in operation. Inspired by how thin film resistors are trimmed during fabrication, the numerical tools were used to design a method for adjusting position of GMR resonances at the time of fabrication.

Close

  • https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-15-6-3452&id=131206
  • doi:https://doi.org/10.1364/OE.15.003452

Close

Footer

Sitemap

  • Course Offerings
  • Research
  • Publications
  • News
  • About Dr. Rumpf
  • Home

Connect with me

  • Email
  • LinkedIn
  • YouTube

Copyright © 2022 Raymond C. Rumpf. All rights reserved. Return to top